Tetrahedron Letters 51 (2010) 3290-3293

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Aminoxy-linked rhodamine hydroxamate as fluorescent chemosensor for Fe³⁺ in aqueous media

Kyung-Soo Moon, Young-Keun Yang, Seunghee Ji, Jinsung Tae*

Department of Chemistry and Center for Bioactive Molecular Hybrids (CBMH), Yonsei University, Seoul 120-749, Republic of Korea

ARTICLE INFO	ABSTRACT
Article history: Received 16 March 2010 Revised 9 April 2010 Accepted 16 April 2010 Available online 20 April 2010	A novel feric ion-selective rhodamine-based fluorescent chemosensor, which contains a bis-aminoxy chain moiety, has been developed. The multi-dentate binding site of rhodamine fluorophore shows selective detection of ferric iron over other biologically important metal ions in aqueous media and also shows 1:1 binding stoichiometry. © 2010 Elsevier Ltd. All rights reserved.

Selective detection of biologically important metal ions has tremendously gained its importance because metal ions are involved in a variety of fundamental biological processes in organisms. Recently, numerous fluorescent chemosensors have been developed to detect biologically important metal ions, such as Hg^{II}, Ca^{II}, Zn^{II}, Cu^{II}, and Pb^{II}.¹

Iron is one of the most important metals in the biological systems and plays a key role in many biochemical processes at the cellular level. Especially, ferric ion (Fe^{III}) is widely retained in many proteins and enzymes either for structural purposes or as part of a catalytic site.² Recently, few examples of Fe^{III}-amplified fluorescent 'turn-on' systems in protic solvents have been reported,³ but most of the known Fe^{III} sensors are based on the fluorescence quenching mechanisms due to the paramagnetic nature of ionic iron.⁴

Biological iron (III) uptake processes utilize siderophores,⁵ such as analogues of ferrichrome which possess hydroxamates as binding units. Recently, we have reported a turn-on fluorescent chemosensor for Fe^{III} based on the biomimetic hydroxamate binding unit coupled with the rhodamine fluorophore.⁶ Although the sensor showed highly selective and sensitive detection for Fe^{III} in organic solvent, we could not observe neither fluorescence increment nor color changes in aqueous media. Herein, we demonstrate a new turn-on fluorescent chemosensor for Fe^{III} based on the bis-aminoxy (diethylene glycol) binding unit coupled with rhodamine-6G fluorophore.

We expected that the flexible bis-aminoxy (diethylene glycol) chain could be a tailor-made binding subunit by using multiple binding sites of the chain, similar to the natural tripodal siderophores (Scheme 1). Moreover, this chain also could be expected

to give stable sensor-metal ion complexes in aqueous media due to the terminal aminoxy group.

etrahedro

Compound **1** was synthesized from diethylene glycol in a threestep procedure (1. DIAD, PPh₃, THF, rt, 18 h, 80%; 2. NH₂NH₂·H₂O, EtOH, reflux, 2 h, 89%; 3. rhodamine-6G, Et₃N, MeOH, reflux, 9 h, 35%). The resulting compound **1** was characterized by ¹H and ¹³C NMR spectroscopy, high resolution mass spectrometry, and was shown to be in full agreement with the structures presented (Scheme 2). This substance forms a colorless solution in H₂O/DMSO (99:1 v/v) and shows no significant fluorescence signals, indicating that **1** exists predominantly as the spirocyclic form. Interestingly, the addition of Fe^{III} into the colorless aqueous solution of **1** generated a strong fluorescence and pink color instantly. At pH 6–9, probe **1** exhibits strong fluorescence enhancement in the presence of Fe^{III} (see Supplementary data).

A fluorescence titration of Fe^{III} was investigated using a 20 μ M solution of **1** in H₂O/DMSO (99:1 v/v) under excitation at

^{*} Corresponding author. Tel.: +82 2 2123 2603; fax: +82 2 364 7050. *E-mail address:* jstae@yonsei.ac.kr (J. Tae).

^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.04.068

Scheme 2. Synthesis of bis-aminoxy chain-linked rhodamine-based fluorescent chemosensor 1.

Figure 1. (a) Fluorescence emission spectra of a solution of 1 (20 μ M) in H₂O/DMSO (99:1 v/v) upon addition of Fe^{III} (excitation at 500 nm). Inset: Plot of fluorescence intensity at 557 nm versus number of equivalents of Fe^{III}. (b) Job's plot according to the method of continuous variations, indicating the 1:1 stoichiometry of 1/Fe^{III}.

 $\lambda_{\rm ex}$ = 500 nm. Upon addition of Fe^{III}, the fluorescence intensity of the solution increases gradually (Fig. 1a) and saturates after addition of about 5 equiv of Fe^{III} (inset).

Job's plot according to the method for continuous variations⁷ shows 1:1 binding stoichiometry between **1** and Fe^{III} as proposed (Fig. 1b). The calculated binding constant ($K_a = 8.0 \times 10^4$) in H₂O/DMSO (99:1 v/v) solution from the fluorescence and UV-titration experiments⁸ based on the 1:1 binding model indicates a strong binding ability of **1** to Fe^{III} in aqueous solution. Furthermore, according to the titration using a 5 μ M solution of **1** in H₂O/DMSO (99:1 v/v), 1 μ M of Fe^{III} was readily detected (see Supplementary data).

Importantly, the formation of sensor $1/\text{Fe}^{III}$ complex is promptly completed and reversible. As shown in Figure 2a, fluorescence intensity is maximized within a minute and shows no changes in fluorescence intensity over 1 h. The reversible binding mode of **1** and Fe^{III} was tested with CN⁻ ion which is known to bind strongly with Fe^{III}. Addition of excess CN⁻ ion into the solution of $1/\text{Fe}^{III}$ showed immediate disappearance of fluorescence and color (Fig. 2b). And the fluorescence intensity of the solution was completely recovered after additional treatment with Fe^{III} (Fig. 2c). Next, to evaluate the Fe^{III}-selective nature of **1**, fluorescence changes caused by the addition of other biologically important metal ions, including Fe^{II}, Zn^{II}, Pb^{II}, Ca^{II}, Co^{II}, Mn^{II}, Mg^{II}, Cu^{II}, Cd^{II}, Ag^I, Na^I, Li^I, Ni^{II}, K^I, and Ba^{II} were tested. Fluorescence intensity changes of **1** (20 μ M) in the presence of 5 equiv of each of these metal ions were analyzed in H₂O/DMSO (99:1 v/v). As shown in Figure 3a, metal ions other than Fe^{III} do not cause significant fluorescence intensity changes. This means that the selectivity profile for Fe^{III} over other metal ions is remarkably high. Furthermore, the influence of other metal ions to the fluorescence intensity changes caused by Fe^{III} is significantly low (Fig. 3b).⁹

The selectivity observed by using fluorescence monitoring is matched when **1** is employed as a colorimetric detector for Fe^{III}. In contrast to the visually observed clear to pink color change associated with the binding of **1** (10 μ M) with Fe^{III}, no significant color changes are prompted by addition of other metal ions (Fig. 4).

In summary, we have developed a highly selective and sensitive ferric ion chemosensor in aqueous media. The flexible bis-aminoxy (diethylene glycol) chain linked to a rhodamine-6G fluorophore showed to be a tailor-made binding subunit by using multiple binding sites of the chain, similar to the natural tripodal sidero-

Figure 2. (a) Fluorescence intensity changes at 557 nm of a solution of 1 (20 μ M) with Fe^{III} (0.5 equiv) in H₂O/DMSO (99:1 v/v), (b) fluorescence intensity changes of a solution of 1 (20 μ M) in H₂O/DMSO (99:1 v/v) solution in the presence of Fe^{III} (5 equiv) with increasing concentrations of CN⁻ ion (read at 557 nm) and (c) regenerated fluorescence by addition of Fe^{III} into the quenched solution.

Figure 3. Fluorescence intensities of 1 (20 μ M) in H₂O/DMSO (99:1 v/v) at 557 nm (a) in the presence of 5 equiv of the following metal ions: (1) Fe^{III}; (2) Fe^{III}; (3) Zn^{II}; (4) Pb^{II}; (5) Ca^{II}; (6) Co^{II}; (7) Mn^{II}; (8) Mg^{III}; (9) Cu^{II}; (10) Cd^{II}; (11) Ag^I; (12) Na^I; (13) Li^I; (14) Ni^{II}; (15) K^I; (16) Ba^{II}, (b) in the presence of 5 equiv of Fe^{III} and 5 equiv of the following metal ions: (1) none; (2) Fe^{II}; (3) Zn^{II}; (4) Pb^{II}; (5) Ca^{II}; (6) Co^{II}; (7) Mn^{II}; (8) Mg^{II}; (9) Cu^{II}; (10) Cd^{II}; (11) Ag^I; (12) Na^I; (12) Na^{II}; (13) Li^{II}; (14) Ni^{II}; (15) K^I; (16) Ba^{II}.

Figure 4. Color changes of 1 (10 $\mu M)$ upon addition of metal ions in H_2O/DMSO (99:1 v/v).

phores. This chemosensor binds with Fe^{III} in a 1:1 stoichiometric manner to induce a large increment in the fluorescence intensity and a marked color change. Importantly, the selectivity of this system for Fe^{III} over other biologically important metal ions is extremely high.

Acknowledgments

This work is funded by CBMH (Yonsei University) and KOSEF (No. R01-2008-000-10245-0) funded by the Korea government (MEST).

Supplementary data

Supplementary data (experimental procedures for the synthesis, spectral data, and copies of ¹H NMR and ¹³C NMR, data for

UV–Vis, fluorescence of **1**) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.04.068.

References and notes

1. For Hg²⁺-responsive sensors, see: (a) Chen, X.; Nam, S.-W.; Jou, M. J.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J. Org. Lett. 2008, 10, 5235-5238; (b) Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem., Int. Ed. 2008, 47, 8025-8029; (c) Tang, B.; Cui, L. J.; Xu, K. H.; Tong, L. L.; Yang, G. W.; An, L. G. ChemBioChem 2008, 9, 1159-1164; (d) Yang, H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; Yi, T.; Huang, C. Org. Lett. 2007, 9, 4729-4732; (e) Yang, Y.-K.; Ko, S. K.; Shin, I.; Tae, J. Nat. Protoc. 2007, 2, 1740-1745; (f) Ko, S. K.; Yang, Y.-K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150-14155; (g) Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030–16031; (h) Liu, W.; Xu, L.; Zhang, H.; You, J.; Zhang, X.; Sheng, R.; Li, H.; Wu, S.; Wang, P. Org. Biomol. Chem. 2009, 7, 660-664; (i) Du, J.; Fan, J.; Peng, X.; Sun, P.; Wang, J.; Li, H.; Sun, S. Org. Lett. 2010, 12, 476-479; (j) Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Kitamura, Y.; Oka, K.; Suzuki, K. J. Am. *Chem. Soc.* **2005**, *127*, 10798–10799; FOr Ca²⁺—responsive sensors, see: (k) Tsien, R. W.; Tsien, R. Y. *Annu. Rev. Cell Biol.* **1990**, *6*, 715–760; For Zn²⁺—responsive sensors, see: (1) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517-1549; (m) Domaille, D. W.; Que, E. L.; Chang, C. J. Nat. Chem. Biol. 2008, 4, 168-175; (n) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 13447-13454; For Cu²⁺-responsive sensors, see: (o) Swamy, K. M. K.; Ko, S.-K.; Kwon, S. K.; Lee, H. N.; Mao, C.; Kim, J.-M.; Lee, K.-H.; Kim, J.; Shin, I.; Yoon, J. Chem. Commun. 2008, 5915-5917; (p) Yu, M.; Shi, M.; Chen, Z.; Li, F.; Li, X.; Gao, Y.; Xu, J.; Yang, H.; Zhou, Z.; Yi, T.; Huang, C. Chem. Eur. J. 2008, 14, 6892-6900; (q) Zhao, Y.; Zhang, X. B.; Han, Z. X.; Qiao, L.; Li, C. Y.; Jian, L. X.; Shen, G. L.; Yu, R. Q. Anal. Chem. **2009**, *81*, 7022–7030; (r) Lin, W.; Long, L.; Chen, B.; Tan, W.; Gao, W. Chem. Commun. **2010**, *46*, 1311–1313; For Pb²⁺–responsive sensors, see: (s) Miller, E. W.; He, Q.; Chang, C. J. Nat. Protoc. 2008, 3, 777-783; (t) He, Q.;

Miller, E. W.; Wong, A. P.; Chang, C. J. *J. Am. Chem. Soc.* **2006**, *128*, 9316–9317; (u) Chen, P.; Greenberg, B.; Taghavi, S.; Romano, C.; Van der Lelie, D.; He, C. Angew. Chem., Int. Ed. **2005**, *44*, 2715–2719.

- (a) Aisen, P.; Wessling-Resnick, M.; Leibold, E. A. Curr. Opin. Chem. Biol. 1999, 3, 200–206; (b) Eisenstein, R. S. Annu. Rev. Nutr. 2000, 20, 627–662; (c) Rouault, T. A. Nat. Chem. Biol. 2006, 2, 406–414.
- (a) Zhang, M.; Gao, Y.; Li, M.; Yu, M.; Li, F.; Li, L.; Zhu, M.; Zhang, J.; Yi, T.; Huang, C. Tetrahedron Lett. **2007**, 48, 3709–3712; (b) Xiang, Y.; Tong, A. J. Org. Lett. **2006**, 8, 1549–1552; (c) Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Büschel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K. J. Am. Chem. Soc. **2005**, 127, 13522– 13529; (d) Lee, M. H.; Giap, T. V.; Kim, S. H.; Lee, Y. H.; Kang, C.; Kim, J. S. Chem. Commun. **2010**, 1407–1409.
- (a) Sumner, J. P.; Kopelman, R. Analyst 2005, 130, 528–533; (b) Ma, Y.; Luo, W.; Quinn, P. J.; Liu, Z.; Hider, R. C. J. Med. Chem. 2004, 47, 6349–6362; (c) Tumambac, G. E.; Rosencrance, C. M.; Wolf, C. Tetrahedron 2004, 60, 11293– 11297; (d) Ali, A.; Zhang, Q.; Dai, J.; Huang, X. Biometals 2003, 16, 285–293; (e) Pierre, J. L.; Baret, P.; Serratrice, G. Curr. Med. Chem. 2003, 10, 1077–1084; (f) Liu, J.-M.; Yang, J.-L.; Chen, C.-F.; Huang, Z.-T. Tetrahedron Lett. 2002, 43, 9209–9212; (g) Thomas, F.; Serratrice, G.; Beguin, C.; Aman, E. S.; Pierre, J. L.; Fontecave, M.; Laulhere, J. P. J. Biol. Chem. 1999, 274, 13375–13383.
- (a) Guerinot, M. L. Annu. Rev. Microbiol. 1994, 48, 743–772; (b) Matzanke, B. F.; Müller-Matzanke, G.; Raymond, K. N. In Iron Carriers and Iron Proteins; VCH: NY, 1989; Vol. 5, pp 1–121; (c) Winkelmann, G.; van der Helm, D.; Neilands, J. B. In Iron Transport in Microbes, Plants and Animals; VCH Verlagsgesellschaft mbH: D-6940, Weinheim, Germany, 1987.
- 6. Bae, S.; Tae, J. Tetrahedron Lett. **2007**, 48, 5389–5392.
- 7. Vosburgh, W. C.; Cooper, G. R. J. Am. Chem. Soc. 1941, 63, 437-442.
- 3. See the Supplementary data.
- Fluorescence intensities of 1 with Zn^{II}, Pb^{II}, and Cu^{II} are slightly quenched compared to other metal ions. This means that these metal ions slightly compete with Fe^{III} when binding to 1.